From Wikipedia, the free encyclopedia
This article is about irrigation in agriculture. For other uses, see Irrigation (disambiguation).
An irrigation sprinkler watering a lawn
Irrigation canal in Osmaniye, Turkey
Irrigation is the method in which a controlled amount of water is supplied to plants at regular intervals for agriculture. It is used to assist in the growing of agricultural crops, maintenance of landscapes, and revegetation of disturbed soils in dry areas and during periods of inadequate rainfall. Additionally, irrigation also has a few other uses in crop production, which include protecting plants against frost,[1] suppressing weed growth in grain fields[2] and preventing soil consolidation.[3] In contrast, agriculture that relies only on direct rainfall is referred to as rain-fed or dry land farming.
Irrigation systems are also used for dust suppression, disposal of sewage, and in mining. Irrigation is often studied together with drainage, which is the natural or artificial removal of surface a nd sub-surface water from a given area.
Irrigation has been a central feature of agriculture for over 5,000 years and is the product of many cultures. Historically, it was the basis for economies and societies across the globe, from Asia to the Southwestern United States.
Contents
1 History
1.1 China
1.2 Korea
1.3 North America
2 Present extent
3 Types of irrigation
3.1 Surface irrigation
3.2 Localized irrigation
3.2.1 Subsurface textile irrigation
3.2.2 Drip irrigation
3.3 Irrigation using sprinkler Sprinkler System Installation systems
3.3.1 Irrigation using Center pivot
3.3.2 Irrigation by Lateral move (side roll, wheel line, wheelmove)[32][33]
3.4 Sub-irrigation
3.5 Irrigation Automatically, non-electric using buckets and ropes
3.6 Irrigation using water condensed from humid air
3.7 In-groun d irrigation
4 Water sources
5 Efficiency
6 Technical challenges
7 See also
8 References
9 Further reading
9.1 Journals
10 External links
History
Animal-powered irrigation, Upper Egypt, ca. 1846
Inside a karez tunnel at Turpan, Sinkiang
irrigation in Tamil Nadu, India
Crop sprinklers near Rio Vista, California
Residential flood irrigation in Phoenix, Arizona in the United States of America.
Archaeological investigation has found evidence of irrigation where the natural rainfall was insufficient to support crops for rainfed agriculture.
Perennial irrigation was practiced in the Mesopotamian plain whereby crops were regularly watered throughout the growing season by coaxing water through a matrix of small channels formed in the field.[4]Ancient Egyptians practiced Basin irrigation using the flooding of the Nile to inundate land plots which had been surrounded by dykes. The flood water was held until the fertile sediment had settled before the surplus was returned to the watercourse.[5] There is evidence of the ancient Egyptian pharaoh Amenemhet III in the twelfth dynasty (about 1800 BCE) using the natural lake of the Faiyum Oasis as a reservoir to store surpluses of water for use during the dry seasons, the lake swelled annually from flooding of the Nile.[6]
The Ancient Nubians developed a form of irrigation by using a waterwheel-like device called a sakia. Irrigation began in Nubia some time between the third and second millennium BCE.[7] It largely depended upon the flood waters that would flow through the Nile River and other rivers in what is now the Sudan.[8]
In sub-Saharan Africa irrigation reached the Niger River region cultures and civilizations by the first or second millennium BCE and was based on wet season flooding and water harvesting.[9][10]
Terrace irrigation is evidenced in pre-Columbian America, early Syria, India, and China.[5] In t he Zana Valley of the Andes Mountains in Peru, archaeologists found remains of three irrigation canals radiocarbon dated from the 4th millennium BCE, the 3rd millennium BCE and the 9th century CE. These canals are the earliest record of irrigation in the New World. Traces of a canal possibly dating from the 5th millennium BCE were found under the 4th millennium canal.[11] Sophisticated irrigation and storage systems were developed by the Indus Valley Civilization in present-day Pakistan and North India, including the reservoirs at Girnar in 3000 BCE and an early canal irrigation system from circa 2600 BCE.[12][13] Large scale agriculture was practiced and an extensive network of canals was used for the purpose of irrigation.
Ancient Persia (modern day Iran) as far back as the 6th millennium BCE, where barley was grown in areas where the natural rainfall was insufficient to support such a crop.[14] The Qanats, developed in ancient Persia in about 800 BCE, are among the oldest known irrigation methods still in use today. They are now found in Asia, the Middle East and North Africa. The system comprises a network of vertical wells and gently sloping tunnels driven into the sides of cliffs and steep hills to tap groundwater.[15] The noria, a water wheel with clay pots around the rim powered by the flow of the stream (or by animals where the water source was still), was first brought into use at about this time, by Roman settlers in North Africa. By 150 BCE the pots were fitted with valves to allow smoother filling as they were forced into the water.[16]
The irrigation works of ancient Sri Lanka, the earliest dating from about 300 BCE, in the reign of King Pandukabhaya and under continuous development for the next thousand years, were one of the most complex irrigation systems of the ancient world. In addition to underground canals, the Sinhalese were the first to build completely artificial reservoirs to store water. Due to their engineering superior ity in this sector, they were often called 'masters of irrigation'. Most of these irrigation systems still exist undamaged up to now, in Anuradhapura and Polonnaruwa, because of the advanced and precise engineering. The system was extensively restored and further extended during the reign of King Parakrama Bahu (1153-1186 CE).[17]
China
The oldest known hydraulic engineers of China were Sunshu Ao (6th century BCE) of the Spring and Autumn period and Ximen Bao (5th century BCE) of the Warring States period, both of whom worked on large irrigation projects. In the Sichuan region belonging to the State of Qin of ancient China, the Dujiangyan Irrigation System was built in 256 BCE to irrigate an enormous area of farmland that today still supplies water.[18] By the 2nd century AD, during the Han Dynasty, the Chinese also used chain pumps that lifted water from lower elevation to higher elevation.[19] These were powered by manual foot pedal, hydraulic waterwheels, or rotatin g mechanical wheels pulled by oxen.[20] The water was used for public works of providing water for urban residential quarters and palace gardens, but mostly for irrigation of farmland canals and channels in the fields.[21]
Korea
In 15th century Korea, the world's first rain gauge, uryanggye (Korean:???), was invented in 1441. The inventor was Jang Yeong-sil, a Korean engineer of the Joseon Dynasty, under the active direction of the king, Sejong the Great. It was installed in irrigation tanks as part of a nationwide system to measure and collect rainfall for agricultural applications. With this instrument, planners and farmers could make better use of the information gathered in the survey.[22]
North America
Main article: Hohokam
The earliest agricultural irrigation canal system known in the U.S. dates to between 1200 B.C. and 800 B.C. and was discovered in Marana, Arizona (adjacent to Tucson) in 2009.[23] The irrigation canal system predates the Ho hokam culture by two thousand years and belongs to an unidentified culture. In North America, the Hohokam were the only culture known to rely on irrigation canals to water their crops, and their irrigation systems supported the largest population in the Southwest by AD 1300. The Hohokam constructed an assortment of simple canals combined with weirs in their various agricultural pursuits. Between the 7th and 14th centuries, they also built and maintained extensive irrigation networks along the lower Salt and middle Gila rivers that rivaled the complexity of those used in the ancient Near East, Egypt, and China. These were constructed using relatively simple excavation tools, without the benefit of advanced engineering technologies, and achieved drops of a few feet per mile, balancing erosion and siltation. The Hohokam cultivated varieties of cotton, tobacco, maize, beans and squash, as well as harvested an assortment of wild plants. Late in the Hohokam Chronological Sequence, they al so used extensive dry-farming systems, primarily to grow agave for food and fiber. Their reliance on agricultural strategies based on canal irrigation, vital in their less than hospitable desert environment and arid climate, provided the basis for the aggregation of rural populations into stable urban centers.[24]
Present extent
Irriga tion ditch in Montour County, Pennsylvania, off Strawberry Ridge Road
In the mid-20th century, the advent of diesel and electric motors led to systems that could pump groundwater out of major aquifers faster than drainage basins could refill them. This can lead to permanent loss of aquifer capacity, decreased water quality, ground subsidence, and other problems. The future of food production in such areas as the North China Plain, the Punjab, and the Great Plains of the US is threatened by this phenomenon.[25][26]
At the global scale, 2,788,000km (689 million acres) of fertile land was equipped with irrigation infrastructure around the year 2000. About 68% of the area equipped for irrigation is located in Asia, 17% in the Americas, 9% in Europe, 5% in Africa and 1% in Oceania. The largest contiguous areas of high irrigation density are found:
In Northern India and Pakistan along the Ganges and Indus rivers
In the Hai He, Huang He and Yangtze basins in Chi na
Along the Nile river in Egypt and Sudan
In the Mississippi-Missouri river basin and in parts of California
Smaller irrigation areas are spread across almost all populated parts of the world.[27]
Only eight years later in 2008, the scale of irrigated land increased to an estimated total of 3,245,566km (802 million Sprinkler System Installation acres), which is nearly the size of India.[28]
Types of irrigation
Basin flood irrigation of wheat
Irrigation of land in Punjab, Pakistan
Various types of irrigation techn iques differ in how the water obtained from the source is distributed within the field. In general, the goal is to supply the entire field uniformly with water, so that each plant has the amount of water it needs, neither too much nor too little.
Surface irrigation
Main article: Surface irrigation
In surface (furrow, flood, or level basin) irrigation systems, water moves across the surface of agricultural lands, in order to wet it and infiltrate into the soil. Surface irrigation can be subdivided into furrow, borderstrip or basin irrigation. It is often called flood irrigation when the irrigation results in flooding or near flooding of the cultivated land. Historically, this has been the most common method of irrigating agricultural land and still used in most parts of the world.
Where water levels from the irrigation source permit, the levels are controlled by dikes, usually plugged by soil. This is often seen in terraced rice fields (rice paddies), wher e the method is used to flood or control the level of water in each distinct field. In some cases, the water is pumped, or lifted by human or animal power to the level of the land. The field water efficiency of surface irrigation is typically lower than other forms of irrigation but has the potential for efficiencies in the range of 70% - 90% under appropriate management.
Localized irrigation
Impact sprinkler he ad
Localized irrigation is a system where water is distributed under low pressure through a piped network, in a pre-determined pattern, and applied as a small discharge to each plant or adjacent to it. Drip irrigation, spray or micro-sprinkler irrigation and bubbler irrigation belong to this category of irrigation methods.[29]
Subsurface textile irrigation
Diagram showing the structure of an example SSTI installation
Main article: Subsurface textile irrigation
Subsurface Textile Irrigation (SSTI) is a tec hnology designed specifically for subsurface irrigation in all soil textures from desert sands to heavy clays. A typical subsurface textile irrigation system has an impermeable base layer (usually polyethylene or polypropylene), a drip line running along that base, a layer of geotextile on top of the drip line and, finally, a narrow impermeable layer on top of the geotextile (see diagram). Unlike standard drip irrigation, the spacing of emitters in the drip pipe is not critical as the geotextile moves the water along the fabric up to 2m from the dripper.
Drip irrigation
Drip irrigation layout and its parts
Drip irrigation - a dripper in action
Grapes in Petrolina, only made possible in this semi arid area by drip irrigation
Main article: Drip irrigation
Drip (or micro) irrigation, also known as trickle irrigation, functions as its name suggests. In this system water falls drop by drop just at the position of roots. Water is delivered at or near the root zone of plants, drop by drop. This method can be the most water-efficient method of irrigation,[30] if managed properly, since evaporation and runoff are minimized. The field water efficiency of drip irrigation is typically in the range of 80 to 90 percent when managed correctly.
In modern agriculture, drip irrigation is often combined with plastic mulch, further reducing evaporation, and is also the means of delivery of fertilizer. The process is known as fertigation.
Deep percolation, where water moves below the root zone, can occur if a dri p system is operated for too long or if the delivery rate is too high. Drip irrigation methods range from very high-tech and computerized to low-tech and labor-intensive. Lower water pressures are usually needed than for most other types of systems, with the exception of low energy center pivot systems and surface irrigation systems, and the system can be designed for uniformity throughout a field or for precise water delivery to individual plants in a landscape containing a mix of plant species. Although it is difficult to regulate pressure on steep slopes, pressure compensating emitters are available, so the field does not have to be level. High-tech solutions involve precisely calibrated emitters located along lines of tubing that extend from a computerized set of valves.
Irrigation using sprinkler systems
Sprinkler irrigation of blueberries in Plainville, New York, United States
A traveling sprinkler at Millets Farm Centre, Oxfordshire, United Kingdom
Further information: Irrigation sprinkler
In sprinkler or overhead irrigation, water is piped to one or more central locations within the field and distributed by overhead high-pressure sprinklers or guns. A system utilizing sprinklers, sprays, or guns mounted overhead on permanently installed risers is often referred to as a solid-set irrigation system. Higher pressure sprinklers that rotate are called rotors an are driven by a ball drive, gear drive, or impact mechanism. Rotors can be designed to rotate in a full or partial circle. Guns are similar to rotors, except that they generally operate at very high pressures of 40 to 130lbf/in (275 to 900 kPa) and flows of 50 to 1200 US gal/min (3 to 76 L/s), usually with nozzle diameters in the range of 0.5 to 1.9inches (10 to 50mm). Guns are used not only for irrigation, but also for industrial applications such as dust suppression and logging.
Sprinklers can also be mounted on moving platforms connected to the water source by a hose. Automatically moving wheeled systems known as traveling sprinklers may irrigate areas such as small farms, sports fields, parks, pastures, and cemeteries unattended. Most of these utilize a leng th of polyethylene tubing wound on a steel drum. As the tubing is wound on the drum powered by the irrigation water or a small gas engine, the sprinkler is pulled across the field. When the sprinkler arrives back at the reel the system shuts off. This type of system is known to most people as a "waterreel" traveling irrigation sprinkler and they are used extensively for dust suppression, irrigation, and land application of waste water.
Other travelers use a flat rubber hose that is dragged along behind while the sprinkler platform is pulled by a cable. These cable-type travelers are definitely old technology and their use is limited in today's modern irrigation projects.
Irrigation using Center pivot
A small center pivot system from beginning to end
The hub of a center-pivot irrigation system
Rotator style pivot applicator sprinkler
Center pivot with drop sprinklers
Wheel line irrigation system in Idaho, 2001
Main article: Center pivot irrigation
Center pivot irrigation
Center pivot irrigation is a form of sprinkler irrigation consisting of several segments of pipe (usually galvanized steel or aluminium) joined together and supported by trusses, mounted on wheeled towers w ith sprinklers positioned along its length.[31] The system moves in a circular pattern and is fed with water from the pivot point at the center of the arc. These systems are found and used in all parts of the world and allow irrigation of all types of terrain. Newer systems have drop sprinkler heads as shown in the image that follows.
Most center pivot systems now have drops hanging from a u-shaped pipe attached at the top of the pipe with sprinkler head that are positioned a few feet (at most) above the crop, thus limiting evaporative losses. Drops can also be used with drag hoses or bubblers that deposit the water directly on the ground between crops. Crops are often planted in a circle to conform to the center pivot. This type of system is known as LEPA (Low Energy Precision Application). Originally, most center pivots were water powered. These were replaced by hydraulic systems (T-L Irrigation) and electric motor driven systems (Reinke, Valley, Zimmatic). Many modern pivo ts feature GPS devices.
Irrigation by Lateral move (side roll, wheel line, wheelmove)[32][33]
A series of pipes, each with a wheel of about 1.5 m diameter permanently affixed to its midpoint, and sprinklers along its length, are coupled together. Water is supplied at one end using a large hose. After sufficient irrigation has been applied to one strip of the field, the hose is removed, the water drained from the system, and the assembly rolled either by hand or with a purpose-built mechanism, so that the sprinklers are moved to a different position across the field. The hose is reconnected. The process is repeated in a pattern until the whole field has been irrigated.
This system is less expensive to install than a center pivot, but much more labor-intensive to operate - it does not travel automatically across the field: it applies water in a stationary strip, must be drained, and then rolled to a new strip. Most systems use 4 or 5-inch (130mm) diameter aluminum pipe. The pipe doubles both as water transport and as an axle for rotating all the wheels. A drive system (often found near the centre of the wheel line) rotates the clamped-together pipe sections as a single axle, rolling the whole wheel line. Manual adjustment of individual wheel positions may be necessary if the system becomes misaligned.
Wheel line systems are limited in the amount of water they can carry, and limited in the height of crops that can be irrigated. One useful feature of a lateral move system is that it consists of sections that can be easily disconnected, adapting to field shape as the line is moved. They are most often used for small, rectilinear, or oddly-shaped fields, hilly or mountainous regions, or in regions where labor is inexpensive.
Sub-irrigation
Subirrigation has been used for many years in field crops in areas with high water tables. It is a method of artificially raising the water table to allow the soil to be moistened from bel ow the plants' root zone. Often those systems are located on permanent grasslands in lowlands or river valleys and combined with drainage infrastructure. A system of pumping stations, canals, weirs and gates allows it to increase or decrease the water level in a network of ditches and thereby control the water table.
Sub-irrigation is also used in commercial greenhouse production, usually for potted plants. Water is delivered from below, absorbed upwards, and the excess collected for recycling. Typically, a solution of water and nutrients floods a container or flows through a trough for a short period of time, 10-20 minutes, and is then pumped back into a holding tank for reuse. Sub-irrigation in greenhouses requires fairly sophisticated, expensive equipment and management. Advantages are water and nutrient conservation, and labor-saving through lowered system maintenance and automation. It is similar in principle and action to subsurface basin irrigation.
Irrigation A utomatically, non-electric using buckets and ropes
Besides the common manual watering by bucket, an automated, natural version of this also exists. Using plain polyester ropes combined with a prepared ground mixture can be used to water plants from a vessel filled with water.[34][35][36]
The ground mixture would need to be made depending on the plant itself, yet would mostly consist of black potting soil, vermiculite and perlite. This system would (with certain crops) allow to save expenses as it does not consume any electricity and only little water (unlike sprinklers, water timers, etc.). However, it may only be used with certain crops (probably mostly larger crops that do not need a humid environment; perhaps e.g. paprikas).
Irrigation using water condensed from humid air
In countries where at night, humid air sweeps the countryside.Water can be obtained from the humid air by condensation onto cold surfaces. This is for example practiced in the vineyar ds at Lanzarote using stones to condense water or with various fog collectors based on canvas or foil sheets.
In-ground irrigation
Most commercial and residential irrigation systems are "in ground" systems, which means that everything is buried in the ground. With the pipes, sprinklers, emitters (drippers), and irrigation valves being hidden, it makes for a cleaner, more presentable landscape without garden hoses or other items having to be moved around manually. This does, however, create some drawbacks in the maintenance of a completely buried system.
Most irrigation systems are divided into zones. A zone is a single irrigation valve and one or a group of drippers or sprinklers that are connected by pipes or tubes. Irrigation systems are divided into zones because there is usually not enough pressure and available flow to run sprinklers for an entire yard or sports field at once. Each zone has a solenoid valve on it that is controlled via wire by an irrigation controller. The irrigation controller is either a mechanical (now the "dinosaur" type) or electrical device that signals a zone to turn on at a specific time and keeps it on for a specified amount of time. "Smart Controller" is a recent term for a controller that is capable of adjusting the watering time by itself in response to current environmental conditions. The smart controller determines current conditions by means of historic weather data for the local area, a soil moisture sensor (water potential or water content), rain sensor, or in more sophisticated systems satellite feed weather station, or a combination of these.
When a zone comes on, the water flows through the lateral lines and ultimately ends up at the irrigation emitter (drip) or sprinkler heads. Many sprinklers have pipe thread inlets on the bottom of them which allows a fitting and the pipe to be attached to them. The sprinklers are usually installed with the top of the head flush with the ground surface. When the water is pressurized, the head will pop up out of the ground and water the desired area until the valve closes and shuts off that zone. Once there is no more water pressure in the lateral line, the sprinkler head will retract back into the ground. Emitters are generally laid on the soil surface or buried a few inches to reduce evaporation losses.
Water sources
Irrigation is underway by pump-enabled extraction directly from the Gumti, seen in the background, in Comilla, Bangladesh.
Irrigation water can come from groundwater (extracted from springs or by using wells), from surface water (withdrawn from rivers, lakes or reservoirs) or from non-conventional sources like treated wastewater, desalinated water or drainage water. A special form of irrigation using surface water is spate irrigation, also called floodwater harvesting. In case of a flood (spate), water is diverted to normally dry river beds (wadis) using a network of dams, gates and channels and spread over large areas. The moisture stored in the soil will be used thereafter to grow crops. Spate irrigation areas are in particular located in semi-arid or arid, mountainous regions. While floodwat er harvesting belongs to the accepted irrigation methods, rainwater harvesting is usually not considered as a form of irrigation. Rainwater harvesting is the collection of runoff water from roofs or unused land and the concentration of this.
Around 90% of wastewater produced globally remains untreated, causing widespread water pollution, especially in low-income countries. Increasingly, agriculture uses untreated wastewater as a source of irrigation water. Cities provide lucrative markets for fresh produce, so are attractive to farmers. However, because agriculture has to compete for increasingly scarce water resources with industry and http://azlandscapecreations.com/ municipal users (see Water scarcity below), there is often no alternative for farmers but to use water polluted with urban waste, including sewage, directly to water their crops. Significant health hazards can result from using water loaded with pathogens in this w ay, especially if people eat raw vegetables that have been irrigated with the polluted water. The International Water Management Institute has worked in India, Pakistan, Vietnam, Ghana, Ethiopia, Mexico and other countries on various projects aimed at assessing and reducing risks of wastewater irrigation. They advocate a 'multiple-barrier' approach to wastewater use, where farmers are encouraged to adopt various risk-reducing behaviours. These include ceasing irrigation a few days before harvesting to allow pathogens to die off in the sunlight, applying water carefully so it does not contaminate leaves likely to be eaten raw, cleaning vegetables with disinfectant or allowing fecal sludge used in farming to dry before being used as a human manure.[37] The World Health Organization has developed guidelines for safe water use.
There are numer ous benefits of using recycled water for irrigation, including the low cost (when compared to other sources, particularly in an urban area), consistency of supply (regardless of season, climatic conditions and associated water restrictions), and general consistency of quality. Irrigation of recycled wastewater is also considered as a means for plant fertilization and particularly nutrient supplementation. This approach carries with it a risk of soil and water pollution through excessive wastewater application. Hence, a detailed understanding of soil water conditions is essential for effective utilization of wastewater for irrigation.[38]
Efficiency
Young engineers restoring and developing the old Mughal irrigation system during the reign of the Mughal Emperor Bahadur Shah II
Modern irrigation methods are efficient enough to supply the entire field uniformly with water, so that each plant has the amount of water it needs, neither too much nor too little.[39] Water use efficiency in the field can be determined as follows:
Field Water Efficiency (%) = (Water Transpired by Crop Water Applied to Field) x 100
Until 1960s, the common perception was that water was an infinite resource. At that time, there were fewer than half the current number of people on the planet. People were not as wealthy as today, consumed fewer calories and ate less meat, so less water was needed to produce their food. They required a third of the volume of water we presently take from rivers. Today, the competition for water resources is much more intense. This is because there are now more than seven billion people on the planet, their consumption of water-thirsty meat and vegetables is rising, and there is increasing competition for water from industry, urbanisation and biofuel crops. To avoid a global water crisis, farmers will have to strive to increase productivity to meet growing demands for food, while industry and cities find ways to use water more efficiently.[40]
Successful agriculture is dependent upon farmers having sufficient access to water. However, water scarcity is already a critical constraint to farming in many parts of the world. With regards to agriculture, the World Bank targets food production and water management as an increasingly global issue that is fostering a growing deb ate.[41]Physical water scarcity is where there is not enough water to meet all demands, including that needed for ecosystems to function effectively. Arid regions frequently suffer from physical water scarcity. It also occurs where water seems abundant but where resources are over-committed. This can happen where there is overdevelopment of hydraulic infrastructure, usually for irrigation. Symptoms of physical water scarcity include environmental degradation and declining groundwater. Economic scarcity, meanwhile, is caused by a lack of investment in water or insufficient human capacity to satisfy the demand for water. Symptoms of economic water scarcity include a lack of infrastructure, with people often having to fetch water from rivers for domestic and agricultural uses. Some 2.8 billion people currently live in water-scarce areas.[42]
Technical challenges
Main article: Environmental impact of irrigation
Irrigation schemes involve solving numerous engineering and economic problems while minimizing negative environmental impact.[43]
Competition for surface water rights.[44]
Overdrafting (depletion) of underground aquifers.
Ground subsidence (e.g. New Orleans, Louisiana)
Underirrigation or irrigation giving only just enough water for the plant (e.g. in drip line irrigation) gives poor soil salinity control which leads to increased soil salinity with consequent buildup of toxic salts on soil surface in areas with high evaporation. This requires either leaching to remove these salts and a method of drainage to carry the salts away. When using drip lines, the leaching is best done regularly at certain intervals (with only a slight excess of water), so that the salt is flushed back under the plant's roots.[45][46]
Overirrigation because of poor distribution uniformity or management wastes water, chemicals, and may lead to water pollution.[47]
Deep drainage (from over-irrigation) may result in rising w ater tables which in some instances will lead to problems of irrigation salinity requiring watertable control by some form of subsurface land drainage.[48][49]
Irrigation with saline or high-sodium water may damage soil structure owing to the formation of alkaline soil
Clogging of filters: It is mostly algae that clog filters, drip installations and nozzles. UV[50] and ultrasonic[51] method can be used for algae control in irrigation systems.
See also
Deficit irrigation
Environmental impact of irrigation
Farm water
Gezira Scheme
Irrigation district
Irrigation management
Irrigation statistics
Leaf Sensor
Lift irrigation schemes
List of countries by irrigated land area
Nano Ganesh
Paddy field
Qanat
Surface irrigation
Tidal irrigation
References
^ Snyder, R. L.; Melo-Abreu, J. P. (2005). "Frost protection: fundamentals, practice, and economics" (PD F). Food and Agriculture Organization of the United Nations. ISSN1684-8241.
^ Williams, J. F.; S. R. Roberts; J. E. Hill; S. C. Scardaci; G. Tibbits. "Managing Water for 'Weed' Control in Rice". UC Davis, Department of Plant Sciences. Retrieved 2007-03-14.
^ "Aridpoop -05-15". Retrieved 2012-06-19.
^ Hill, Donald: A History of Engineering
^ a b p19 Hill
^ "Amenemhet III". Britannica Concise. Retrieved 2007-01-10.
^ G. Mokhtar (1981-01-01). Ancient civilizations of Africa. Unesco. International Scientific Committee for the Drafting of a General History of Africa. p.309. ISBN9780435948054. Retrieved 2012-06-19 - via Books.google.com.
^ Richard Bulliet, Pamela Kyle Crossley, Daniel Headrick, Steven Hirsch. Pages 53-56 (2008-06-18). The Earth and Its Peoples, Volume I: A Global History, to 1550. Books.google.com. ISBN0618992383. Retrieved 2012-06-19.
^ "Traditional technologies". Fao.org. Retrieved 2012-06-19.
^ "Africa, Eme rging Civilizations In Sub-Sahara Africa. Various Authors; Edited By: R. A. Guisepi". History-world.org. Retrieved 2012-06-19.
^ Dillehay TD, Eling HH Jr, Rossen J (2005). "Preceramic irrigation canals in the Peruvian Andes". Proceedings of the National Academy of Sciences. 102 (47): 17241-4. PMC1288011 . PMID16284247. doi:10.1073/pnas.0508583102.
^ Rodda, J. C. and Ubertini, Lucio (2004). The Basis of Civilization - Water Science? pg 161. International Association of Hydrological Sciences (International Association of Hydrological Sciences Press 2004) .
^ "Ancient India Indus Valley Civilization". Minnesota State University "e-museum". Retrieved 2007-01-10.
^ The History of Technology- Irrigation. Encyclopdia Britannica, 1994 edition.
^ "Qanat Irrigation Systems and Homegardens (Iran)". Globally Important Agriculture Heritage Systems. UN Food and Agriculture Organization. Retrieved 2007-01-10.
^ Encyclopdia Britannica, 1911 and 1989 editions
^ de Silva, Sena (1998). "Reservoirs of Sri Lanka and their fisheries". UN Food and Agriculture Organization. Retrieved 2007-01-10.
^ China- history. Encyclopdia Britannica,1994 edition.
^ Needham, Joseph (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology, Part 2, Mechanical Engineering. Taipei: Caves Books Ltd. Pages 344-346.
^ Needham, Volume 4, Part 2, 340-343.
^ Needham, Volume 4, Part 2, 33, 110.
^ Baek Seok-gi ??? (1987). Jang Yeong-sil ???. Woongjin Wiin Jeon-gi ?????? 11. Woongjin P ublishing Co., Ltd.
^ "Earliest Canals in America - Archaeology Magazine Archive".
^ James M. Bayman, "The Hohokam of Southwest North America." Journal of World Prehistory 15.3 (2001): 257-311.
^ "A new report says we're draining our aquifers faster than ever". High Country News. 2013-06-22. Retrieved 2014-02-11.
^ "Management of aquifer recharge and discharge processes and aquifer storage equilibrium" (PDF). Groundwater storage is shown to be declining in all populated continents...
^ Siebert, S.; J. Hoogeveen, P. Dll, J-M. Faurs, S. Feick, and K. Frenken (2006-11-10). "The Digital Global Map of Irrigation Areas- Development and Validation of Map Version 4" (PDF). Tropentag 2006- Conference on International Agricultural Research for Development. Bonn, Germany. Retrieved 2007-03-14.
^ The CIA World Factbook, retrieved 2011-10-30
^ Frenken, K. (2005). Irrigation in Africa in figures- AQUASTAT Survey- 2005 (PDF). Food and Agriculture Or ganization of the United Nations. ISBN92-5-105414-2. Retrieved 2007-03-14.
^ Provenzano, Giuseppe (2007). "Using HYDRUS-2D Simulation Model to Evaluate Wetted Soil Volume in Subsurface Drip Irrigation Systems". J. Irrig. Drain Eng. 133 (4): 342-350. doi:10.1061/(ASCE)0733-9437(2007)133:4(342).
^ Mader, Shelli (May 25, 2010). "Center pivot irrigation revolutionizes agriculture". The Fence Post Magazine. Retrieved June 6, 2012.
^ Peters, Troy. "Managing Wheel - Lines and Hand - Lines for High Profitability" (PDF). Retrieved 29 May 2015.
^ Hill, Robert. "Wheelmove Sprinkler Irrigation Operation and Management" (PDF). Retrieved 29 May 2015.
^ "Polyester ropes natural irrigation technique". Entheogen.com. Archived from the original on April 12, 2012. Retrieved 2012-06-19.
^ "Polyester rope natural irrigation technique 2". Diyrecipes.com. Retrieved 2012-06-19.
^ "DIY instructions for making self-watering system using ropes". Instructables.c om. 2008-03-17. Retrieved 2012-06-19.
^ Wastewater use in agriculture: Not only an issue where water is scarce! International Water Management Institute, 2010. Water Issue Brief 4
^ http://www.hydrol-earth-syst-sci.net/17/4339/2013/hess-17-4339-2013.pdf
^ "Water use efficiency - agriwaterpedia.info".
^ Chartres, C. and Varma, S. Out of water. From Abundance to Scarcity and How to Solve the World's Water Problems FT Press (USA), 2010
^ "Reengaging in Agricultural Water Management: Challenges and Options". The World Bank. pp.4-5. Retrieved 2011-10-30.
^ Molden, D. (Ed). Water for food, Water for life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan/IWMI, 2007.
^ ILRI, 1989, Effectiveness and Social/Environmental Impacts of Irrigation Projects: a Review. In: Annual Report 1988, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands, pp. 18 - 34 . On line: [1]
^ Ros egrant, Mark W., and Hans P. Binswanger. "Markets in tradable water rights: potential for efficiency gains in developing country water resource allocation." World development (1994) 22#11 pp: 1613-1625.
^ EOS magazine, september 2009
^ World Water Council
^ Hukkinen, Janne, Emery Roe, and Gene I. Rochlin. "A salt on the land: A narrative analysis of the controversy over irrigation-related salinity and toxicity in California's San Joaquin Valley." Policy Sciences 23.4 (1990): 307-329. online
^ Drainage Manual: A Guide to Integrating Plant, Soil, and Water Relationships for Drainage of Irrigated Lands. Interior Dept., Bureau of Reclamation. 1993. ISBN0-16-061623-9.
^ "Free articles and software on drainage of waterlogged land and soil salinity control in irrigated land". Retrieved 2010-07-28.
^ UV treatment http://www.uvo3.co.uk/?go=Irrigation_Water
^ ultrasonic algae control http://www.lgsonic.com/irrigation-water-treatment/
Fur ther reading
Elvin, Mark. The retreat of the elephants: an environmental history of China (Yale University Press, 2004)
Hallows, Peter J., and Donald G. Thompson. History of irrigation in Australia ANCID, 1995.
Howell, Terry. "Drops of life in the history of irrigation." Irrigation journal 3 (2000): 26-33. the history of sprinker systems online
Hassan, John. A history of water in modern England and Wales (Manchester University Press, 1998)
Vaidyanathan, A. Water resource management: institutions and irrigation development in India (Oxford University Press, 1999)
Journals
Irrigation Science, ISSN1432-1319 (electronic) 0342-7188 (paper), Springer
Journal of Irrigation and Drainage Engineering, ISSN0733-9437, ASCE Publications
Irrigation and Drainage, ISSN1531-0361, John Wiley & Sons, Ltd.
External links
Look up irrigation in Wiktionary, the free dictionary.
Wikimedia Commons has media related to Irrigation.
"Irrigation techniques". USGS. Retrieved December 8, 2005.
Royal Engineers Museum: 19th century Irrigation in India
[2]< br>
International Commission on Irrigation and Drainage (ICID)
When2Water.com Tutorial and online calculators related to agricultural irrigation
Irrigation at the Water Quality Information Center, U.S. Department of Agriculture
AQUASTAT: FAO's global information system on water and agriculture
Irrigation Supplies: Principles of Water Irrigation Systems
Irrigation & Gardening: Future Of Irrigation Needs
"Lamp Wick Solves Problem of Citrus Irrigation" Popular Mechanics, November 1930
World Bank report on Agricultural water management Irrigation is discussed in chps. 1&4.
This articleincorporates text from a publication now in the public domain:Chisholm, Hugh, ed. (1911). "Irrigation". Encyclopdia Britannica (11th ed.). Cambridge University Press.
v
t
e
Water resources management and irrigation by country
Africa
Burkina Faso
Egypt
Mali
Morocco
South Africa
Sudan
Tanzania
Asia
Afghanistan
Bangladesh
China
Iran
Iraq
India
Israel
Kazakhstan
Pakistan
Saudi Arabia
Syria
Turkey
Turkmenistan
Europe
Belgium
Italy
Russia
North America
Belize
Canada
Costa Rica
Dominican Republic
El Salvador
Guatemala
Honduras
Jamaica
Mexico
Nicaragua
United States
Oceania
Australia
New Zealand
Indonesia
Philippines
South America
Argentina
Bolivia
Brazil - supply
Brazil - irrigation
Chile
Colombia
Peru
Uruguay
List of countries by irrigated land area
v
t
e
Agricultural water management
Irrigation
Surface irrigation
Drip irrigation
Tidal irrigation
Irrigation of alluvial fans
Irrigation statistics
Irrigation management
Irrigation environmental impacts
Subsurface drainage
Tile drainage
Drainage equation
Drainage system (agriculture)
Watertable control
Drainage research
Drainage by wells
Surface water/runoff
Contour trenching
Hydrological modelling
Hydrological transport model
Runoff model (reservoir)
Groundwater
Groundwater flow
Groundwater energy balance
Groundwater model
Hydraulic conductivity
Watertable
Problem soils
Acid sulphate soils
< br>Alkali soils
Saline soils
Agro-hydro-salinity group
Hydrology (agriculture)
Soil salinity control
Leaching model (soil)
SaltMod integrated model
SahysMod polygonal model: Saltmod coupled to a groundwater model
Related topics
Sand dam
v
t
e
Natural resources
Air
Pollution/ quality
Ambient standards (USA)
Index
Indoor
developing nations
Law
Clean Air Act (USA)
Ozone depletion
Emissions
Airshed
Trading
Deforestation (REDD)
Energy
Law
Resources
Fossil fuels(peak oil)
Geothermal
Nuclear
Solar
sunlight
shade
Tidal
Wave
Wind
Land
Arable
peak farmland
Degradation
Law
property
Management
habitat conservation
Minerals
mining
law
sand
peak
rights
Soil
conservation
fertility
health
resilience
Use
planning
reserve
Life
Biodiversity
Bioprospecting
Biosphere
Bushfood
Bushmeat
Fisheries
law
management
Food
Forests
genetic resources
law
management
Game
law
Gene bank
Herbalist plants
Marine conservation
Non-timber forest products
Rangeland
Seed bank
Wildlife
conservation
management
Wood
Water
Types/ location
Aquifer
storage and recovery
Drinking
Fresh
Groundwater
pollution
recharge
remediation
Hydrosphere
Ice
bergs
glacial
polar
Irrigation
Rain
harvesting
Stormwater
Surface water
Wastewater
reclaimed
Aspects
Desalination
Floods
Law
Leaching
Sanitation
Conflict
Conservation
Peak water
Pollution
Privatization
Quality
Right
Resources
management
policy
Related
Common land
common-pool
enclosure
global
tragedy theory
Economics
ecological
Ecosystem services
Exploitation
overexploitation
Management
adaptive
Natural capi tal
accounting
Nature reserve
Systems ecology
Urban ecology
Wilderness
Resource
Conflict (perpetuation)
Curse
Depletion
Extraction
Nationalism
Renewable/ Non-renewable
Portals
Agriculture and agronomy
Energy
Environment
Fishing
Forestry
Mining
Water
Wetlands
Category
agencies
law
management
ministries
organizations
Colleges
Natural resources
v
t
e
Wastewater
Sources
Acid mine drainage
Ballast water
Bathroom
Blackwater (coal)
Blackwater ( waste)
Boiler blowdown
Brine
Combined sewer
Cooling tower
Cooling water
Fecal sludge
Greywater
Infiltration/Inflow
Industrial effluent
Ion exchange
Leachate
Manure
Papermaking
Produced water
Return flow
Reverse osmosis
Sanitary sewer
Septage
Sewage
Sewage sludge
Toilet
Urban runoff
Quality indicators
Biochemical oxygen demand
Chemical oxygen demand
Coliform index
Dissolved oxygen
Heavy metals
pH
Salinity
Temperature
Total dissolved solids
Total suspended solids
Turbidity
Treatment options
Activated sludge
Aerated lagoon
Agricultural wastewater treatment
API oil-water separator
Carbon filtration
Chlorination
Clarifier
Constructed wetland
Decentralized wastewater system
Exten ded aeration
Facultative lagoon
Fecal sludge management
Filtration
Imhoff tank
Industrial wastewater treatment
Ion exchange
Membrane bioreactor
Reverse osmosis
Rotating biological contactor
Secondary treatment
Sedimentation
Septic tank
Settling basin
Sewage sludge treatment
Sewage treatment
Stabilization pond
Trickling filter
Ultraviolet germicidal irradiation
UASB
Vermifilter
Wastewater treatment plant
Disposal options
Combined sewer
Evaporation pond
Groundwater recharge
Infiltration basin
Injection well
Irrigation
Marine dumping
Marine outfall
Reclaimed water
Sanitary sewer
Septic drain field
Sewage farm
Storm drain
Surface runoff
v
t
e
Prehistoric technology
Prehistory
timeline
outlin e
Stone Age
subdivisions
New Stone Age
synoptic table
Technology
history
Tools
Farming
Neolithic Revolution
founder crops
New World crops
Ard/ plough
Celt
Digging stick
Domestication
Goad
Irrigation
Secondary products
Sickle
Terracing
Food processing
Fire
Basket
Cooking
Earth oven
Granaries
Grinding slab
Ground stone
Hearth
A??kl? Hyk
Qesem Cave
Manos
Metate
Mortar and pestle
Pottery
Quern-stone
Storage pit
Hunting
Arrow
Boomerang
throwing stick
Bow and arrow
history
Nets
Spear
Spear-thrower
baton
harpoon
woomera
Schningen Spears
Projectile points
Arrowhead
Bare Island
Cascade
Clovis
Cresswell
< br>Cumberland
Eden
Folsom
Lamoka
Manis Site
Plano
Transverse arrowhead
Systems
Game drive system
Buffalo jump
Toolmaking
Earliest toolmaking
Oldowan
Acheulean
Mousterian
Clovis culture
Cupstone
Fire hardening
Gravettian culture
Hafting
Hand axe
Grooves
Langdale axe industry
Levallois technique
Lithic core
Lithic reduction
analysis
debitage
flake
Lithic technology
Magdalenian culture
Metallurgy
Microblade technology
Mining
Prepared-core technique
Solutrean industry
Striking platform
Tool stone
Uniface
Yubetsu technique
Other tools
Adze
Awl
bone
Axe
Bannerstone
Blade
prismatic
Bone tool
Bow drill
Burin
Canoe
Oar
Pesse ca noe
Chopper
tool
Cleaver
Denticulate tool
Fire plough
Fire-saw
Hammerstone
Knife
Microlith
Quern-stone
Racloir
Rope
Scraper
side
Stone tool
Tally stick
Weapons
Wheel
illustration
Architecture
Ceremonial
Gbekli Tepe
Kiva
Standing stones
megalith
row
Stonehenge
Pyramid
Dwellings
Neolithic architecture
British megalith architecture
Nordic megalith architecture
Burdei
Cave
Cliff dwelling
Dugout
Hut
Quiggly hole
Jacal
Longhouse
Mud brick
Mehrgarh
Neolithic long house
Pit-house
Pueblitos
Pueblo
Rock shelter
Blombos Cave
Abri de la Madeleine
Sibudu Cave
Stone roof
Roundhouse
Stilt house
Alp pile dwellings
Wattle and daub
Water management
Check dam
Cistern
Flush toilet
Reservoir
Water well
Other architecture
Archaeological features
Broch
Burnt mound
fulacht fiadh
Causewayed enclosure
Tor enclosure
Circular enclosure
Goseck
Cursus
Henge
Thornborough
Oldest buildings
Megalithic architectural elements
Midden
Timber circle
Timber trackway
Sweet Track
Arts and culture
Material goods
Baskets
Beadwork
Beds
Chalcolithic
Clothing/textiles
timeline
Cosmetics
Glue
Hides
shoes
tzi
Jewelry
amber use
Mirrors
Pottery
Cardium
Grooved ware
Linear
J?mon
Unstan ware
Sewing needle
Weaving
Wine
Winery
wine press
Prehistoric art
Art of the Upper Pa leolithic
Art of the Middle Paleolithic
Blombos Cave
List of Stone Age art
Bird stone
Bradshaw rock paintings
Cairn
Carved Stone Balls
Cave paintings
painting
pigment
Cup and ring mark
Geoglyph
Golden hats
Guardian stones
Megalithic art
Petroform
Petroglyph
Petrosomatoglyph
Pictogram
Rock art
Stone carving
Sculpture
Statue menhir
Stone circle
list
British Isles and Brittany
Venus figurines
Burial
Burial mounds
Bowl barrow
Round barrow
Mound Builders culture
U.S. sites
Chamber tomb
Severn-Cotswold
Cist
Dartmoor kistvaens
Clava cairn
Court tomb
Cremation
Dolmen
Great dolmen
Funeral pyre
Gallery grave
transepted
wedge-shaped
Grave goods
Jar burial
L ong barrow
unchambered
Grnsalen
Megalithic tomb
Mummy
Passage grave
Rectangular dolmen
Ring cairn
Simple dolmen
Stone box grave
Tor cairn
Tumulus
Unchambered long cairn
Other cultural
Astronomy
sites
lunar calendar
Behavioral modernity
Origin of language
Prehistoric medicine
trepanning
Evolutionary musicology
music archaeology
Prehistoric music
Alligator drum
flutes
Divje Babe flute
gudi
Prehistoric numerals
Origin of religion
Paleolithic religion
Prehistoric religion
Spiritual drug use
Prehistoric warfare
Symbols
symbolism
Authority control
LCCN: sh00006268
GND: 4006306-9
NDL: 00568646
Retrieved from "https://en.wikipedia.org/w/index.php?title=Irrigation&oldid=784200454"
https://en.wikipedia.org/wiki/Irrigation
No comments:
Post a Comment